
Constraint-based Attribute and Interval Planning

Jeremy Frank (frank_email. arc.nasa.gov)

and Ari Jdnsson * (jonsson_email. arc.nasa.gov)
NASA Ames Research Center

Mail Stop N269-3
Moffett Field, CA 94035-1000

Abstract. In this paper we introduce Constraint-based Attribute and Interval
Planning (CAIP), a new paradigm for representing and reasoning about plans. The

paradigm enables the description of planning domains with time, resources, concur-
rent activities, mutual exclusions among sets of activities, disjunctive preconditions
and conditional effects. We provide a theoretical foundation for the paradigm using
a mapping to first order logic. W'e also show that CAIP plans are naturally expressed
by networks of constraints, and that planning maps directly to dynamic constraint
reasoning. In addition, we show how constraint templates are used to provide a
compact mechanism for describing planning domains.

1. What Should a Planner Do?

The classical definition of a planning problem is the synthesis of a

sequence of activities that achieves a given set of goals. In this context,

planning problems consist of a description of the world of interest, a

set of operators that can be used to change the world from one state

to another, a description of the state the world is in (called the initial

state), and a description of the desired state of the world (called the

goals). A more realistic view of planning has extended this notion to
include concurrent activities that are scheduled to occur at specific

times, in order to achieve results that include achieving goal conditions

and maintaining conditions.
In recent years, planning has been applied to complex domains, in-

eluding the sequencing of commands for spacecraft both on the ground

and on-board (Jdnsson et al., 2000). The domain of spacecraft opera-

tions requires controlling systems that are composed of many different

primitive components. Each component may perform one and only

one activity at a time, and many components have restrictions on

which sequences of activities are permitted. Each activity may have

both absolute and relative constraints on its start time, end time, and

duration. Furthermore, activities executing on different components or

subsystems may be required to interact in a variety of ways. Finally,

* Research Institute for Advanced Computer Science

(_) 2001 Kluwer Academic Publishers. Printed in the Netherlands.

journal.v3.tex; 15/10/2001; 18:54; p.1

2

resources such as memory and power are often in limited supply on

spacecraft.

Until quite recently, researchers studied problems in planning repre-

sented in the STRIPS formalism (Fikes and Nilsson, 1971) or one of the
various extensions thereof. In STRIPS, the world state is represented

by a set of propositions, and operators change the truth values of these
propositions. While this formalism is powerful and has led to numerous

contributions in planning, it is difficult to represent problems involving

time, resources, mutual exclusion, and concurrency in STRIPS. In order

to represent time, propositions must reflect not only what is true, but

when it is true. In order to represent resources, propositions reflecting

each possible state of the resource must be introduced into the domain
theory. In order to enforce mutual exclusions, each operator must have

as preconditions an assertion that each mutually excluded state does

not hold. These factors invariably lead to large numbers of propositions
and domain axioms. Since STRIPS includes no inherent notion of time,

it is difficult to decide what actions in a plan take place simultaneously,

even should one take the trouble to create a partial-order causal-link

(POCL). Additionally, it is difficult to express and meet maintenance
goals in STRIPS.

The restrictive representation of STRIPS operators creates other

problems. STRIPS operators cannot be used to check for illegal ini-
tial states. For example, consider the Blocks World. The initial state

0n(x,table), 0n(y,x), 0n(z,x) is illegal, because the intent of the

operators is that only one block may be stacked on any other block.

However, the operators Move (z, table) and Move (w, x) can be applied

sequentially; Move (z,table) asserts Clear (x) as a consequence, even

though 0n(y,x) is still true. In addition, STRIPS operators hide the

sources of disjunctive preconditions, as they must be represented in
separate axioms, and it is impossible to express conditional effects in
STRIPS 1.

Constraint-based representations offer solutions to many of the prob-
lems that arise in static frameworks such as STRIPS. The use of vari-

ables and constraints provides representational flexibility and reasoning

power that can meet the demands of domains involving time, resources,
mutual exclusion and concurrency. For example, variables can represent

the start and end times of an activity, and these variables can be

constrained in arbitrary ways. This, in turn, is a key component of

representing and reasoning about concurrent plans with absolute and
relative temporal constraints. More generally, constraints can also be

l Extensions of the basic STRIPS formalism have provided convenient notations

for disjunctive preconditions and conditional effects, but those are invariably handled

by splitting the operator descriptions accordingly.

journal.v3.tex; 15/10/2001; 18:54; p.2

used to represent mutual exclusions, disjunctive preconditions, and con-

ditional effects of actions. Finally, constraints can be used to represent

and reason about many different types of resources.

An additional advantage of a constraint-based representation is the

possibility of inheriting a host of technologies from constraint satisfac-

tion to aid in planning. For example, techniques like no-good reasoning

during search (Do and Khambhampati, 2000), domain independent

heuristics (Ghallab and Laruelle, 1994; Haslum and Geffner, 2000)

and linear programming (Penberthy, 1993) have already seen use in

some planning systems. Finally, the underlying constraint representa-

tion permits arbitrary domain rules to be represented using procedural

constraints, providing a flexible, extensible representation that can be

rapidly adapted to different domains.

In this paper, we introduce Constraint-based Attribute and Interval

Planning (CAIP), a planning paradigm that explicitly supports time,
concurrency, resources, and mutual exclusion. CAIP is built on the

notions of attributes, which describe concurrent domain components,

and intervals, which describe temporal extent of activities and states.

The paper is organized as follows. In §2 we formally de_ne attributes

and intervals, which are the fundamental concepts of our framework.

We provide a theoretical foundation for CAIP by relating the attribute
and interval representation to a first-order logical representation. We

then introduce configuration rules as an expressive method to define

domains models, and define the notion of valid plans in this framework.

In §3 we show that CAIP plans are naturally expressed by networks

of constraints, and show how planning maps directly to dynamic con-
straint reasoning. We also present a compact mechanism for describing

CAIP planning domains using constraint templates. In §4 we discuss

previous work, and in §5 we conclude and discuss future work.

2. The Constraint-Based Attribute and Interval Planning
Framework

The motivation for our planning framework comes from how complex

concurrent systems, such as spacecraft, are typically designed and de-

scribed. The system and its interfaces axe divided into components and

subsystems, which we refer to as attributes. Each attribute represents

a concurrent thread, describing its history over time as a sequence of
states and activities. An interval describes a state or an activity with

temporal extent. A plan, then, consists of a sequence of contiguous

intervals for each attribute, such that the planning domain rules are

journal.v3.tex; 15/10/2001; 18:54; p.3

4

satisfied. The process of planning is based on reasoning about the values

of attributes in terms of temporal intervals.

In the remainder of this section, we formally define the foundation,

the key concepts and the basic semantics used in this paradigm. In the

following section we build on the foundation to introduce a compact

and effective constraint-based approach to representing and reasoning
about candidate plans.

2.1. INTERVALS AND ATTRIBUTES

In order to then be able to plan concurrent activities and states with

temporal extents, we need a representation for stating that an activity

or a state extends over some period of time. We use a basic notion of

a state or activity that is similar to that used by STRIPS and other

formalisms for planning, in that each state or activity is an atomic
predicate in a finite universe. Each predicate is defined by a unique

predicate name and set of typed arguments for the predicate. Temporal

intervals are a naturM representation for a plan of activities and states

that change over time. An interval specifies that a certain predicate

atom holds over a certain period of time. An interval can, for example,

state that Going(locl,loc2) holds between time 10 and time 20.

In order to facilitate reasoning about real systems, we reason explic-
itly about attributes, their states and activities. Associated with each

attribute is the set of possible values it can possibly take on, which

are described using intervals. As an example, consider a simple domain
for a planetary rover. Let us suppose we only care where the rover is,

and whether the rover is in one place, moving from place to place, and
possibly collecting samples with a robot arm. We can model this with a

Location attribute, which can take on the values like At (lander), and

Going(lander ,hill), and an Arm-State attribute, which can take on

values such as Collect (rock,hill), Idle (), and Dff ().
When describing an attribute, we must specify the set of possible val-

ues. It is natural to extend the specification to include the permissible
value transitions. These transitions enforce common-sense rules about

the domain, such as the reachable physical locations and the passing of

time during the course of the plan. A value like Going(lander,hill)

can only be reached from an At (lander) value and can only lead to
an At(hill) value. A value like A_(hill) can be reached from any

possible Going(? ,hill) and can lead to any possible Going(hill, ?)
value. Similarly, an interval that holds until time 20 can only be followed

by an interval that begins at time 20. The most natural representation
for such transition information is a finite state machine, which specifies

the possible transitions.

journal.v3.tex; 15/10/2001; 18:54; p.4

Based on this, we formally define an attribute as a set of possible

values, each of which is an interval, and a finite state machine with the

value set as its alphabet.

Since each attribute can only take on a limited set of values, each

interval is implicitly associated with a set of attributes, namely those

for which the interval predicate atom as a possible value. The interval

will therefore also specify the attribute whose value it is describing. For-

mally, an interval consists of a predicate logic statement, i.e. a predicate

head and a list of applicable parameters, a start time, an end time, and

the attribute to which it applies. To continue our example, the above-

mentioned interval, which can be written as holds(Location, 10,

20, Going (loc 1, loc2)) will specify that the attribute Location takes
on the value Going(loci ,loc2) between times 10 and 20.

As we have already mentioned, each attribute can only take on one

value at any one time. This corresponds to mutual exclusion rules
between intervals applying to the same attribute. More formally, let

holds(A, n, ra, P) be an interval that specifies that the attribute
h has the value P from time n to time m. Let holds (h, t, s, Q) be

another interval for the same attribute. Either the time intervals [n,m]

and [t, s] are disjoint, or P and Q are the same atom.

2.2. DOMAIN CONSTRAINTS AND CONFIGURATION RULES

The basic structure of a plan is a mapping of each attribute to a

sequence of intervals, such that the sequence is permitted by the finite

state machine for the attribute in question. The intervals in such a

sequence will be contiguous, by virtue of how the finite state machine is
defined. In order to constitute a valid plan, it must also satisfy other do-
main constraints about interactions between attribute activities. New
now turn our attention to how domain constraints are defined in this

framework.

In STRIPS, the domain constraints are specified in terms of operator

descriptions and implicit frame axioms. For each operator (action), the

description specifies what must hold immediately before the action is
executed and what must hold immediately after the execution. For

each fluent (state), the operator descriptions, combined with the frame
axioms, specify what must happen for the fluent to become true and

what can make the fluent not be true. We use a more general definition
of domain constraints. The added expressivity is a necessary component

of reasoning about time and concurrent interactions, as simple STRIPS

extensions are simply not sufficient to describe the complexity of real-

world concurrency.

journal.v3.tex; 15/10/2001; 18:54; p.5

The basic notion is to specify restrictions on how attribute value

intervals can appear in valid plans. For a simple example, consider

our simple rover. Suppose that the interval holds (Location, 10, 20,

Going (locl, loc2)) is part of the plan. Suppose further that the arm
is fragile, and thus must be turned off while the rover is traveling from

one place to another. This requirement must be satisfied by inserting

an appropriate interval on the Arm-State attribute. An interval such as

holds (Arm-State, 10,20, 0ff ()), satisfies this constraint. However,

the interval holds(Arm-State, 9,21, 0ff()) would also suf_ce, as

would a possibly infinite number of such intervals.

We define for each possible interval I a set of configurations in which
I legally can appear in a valid plan. Each configuration defines a set

of other intervals, each of which must exist in a valid plan containing

the interval I. We refer to a set of configurations as a configuration

rule. Notice that this formalism easily provides support for disjunctive

preconditions and conditional effects. We now have enough to formally

specify a planning domain.

DEFINITION 2.1. A planning domain 79 is a tuple (22, .4, T4), where

Z is a set of intervals, .4 is a set of attributes, and 7-4 is a set o/

configuration rules.

2.3. PLANNING PROBLEMS

The final component is to define a planning problem in this framework.

In STRIPS, the problem instance definition is limited to a complete

specification of the initial values of all fluents and a set of goals to be

achieved at the end of the plan. This is much too limiting for reasoning
about interactive, concurrent activities over time. For example, specific

activity goals may be part of the overall planning problem, activities

may be ongoing at the start or end of the plan, and there may be

temporal components to the overall goal of the plan. A more natural
planning problem specification is that a planning problem is an incom-

plete plan, or a disjunction of incomplete plans, and the problem is

to turn an incomplete plan candidate into a valid and complete plan.
In our framework, a problem instance is a candidate plan, or a set of

candidate plans, which in turn is defined as a mapping of attributes to

sequences of intervals that are not necessarily continuous, along with
a set of non-sequenced intervals that must be part of a final plan. The

goal is to find a complete plan such that all of the configuration rules
in the domain are satisfied.

Notice that this notion permits a wide variety of goals, including

maintenance and achievement goals. It is also possible to use this frame-

journal.v3.tex; 15/10/2001; 18:54; p.6

work for generating explanations by not specifying the initial state of
one or more attributes.

3. Constraint-based Interval and Attribute Planning

We have formally defined a planning framework in terms of predicate

instantiations, interval instances for attributes, and grounded config-
uration rules. While this serves to provide a solid foundation for a

planning framework that is significantly more expressive than tradi-

tionM STRIPS, it is not a very practical framework for solving planning

problems. In this section, we turn the formal framework into a practi-

cal approach to planning, using a constraint-based representation and

reasoning.

3.1. REPRESENTING CANDIDATE PLANS

The core idea of our constraint-based representation is to generalize
the notion of an interval to allow variables in place of grounded values

in the parameters, times, and attributes, and then use constraints on

those variables to represent domain constraints. Not surprisingly, the

constraint-based approach is a very effective way to enforce and reason
about domain rules in this framework.

As in traditional definitions of constraint networks, a variable has

a domain that specifies the set of possible values. A constraint has a

scope that specifies a set of variables, and a specification defining a set
of tuples that limit the valid combination of values assigned to variables

in the scope.
The first part of turning our baseline framework into a constraint-

based representation is to allow attribute values to be described as

predicate atoms with variables. A value description therefore becomes

a tuple of the form p(xl, ...,zk), where p is some predicate name and
each xi is a variable whose domain is the set of possible values defined

by the type of the predicate parameter. The next step is to generalize
the notion of an interval to allow predicate atoms with variables and
the use of variables to describe the times and attribute. An interval now

becomes a tuple of the form holds(a, ts, te, P), where a is a variable

with the set of possible attributes as its domain, ts and te have the

possible time values as their domains, and P is a predicate atom with

variables. The last step is to introduce two extra variables hs,he, to

represent the horizon of the plan. We enforce the obvious constraints

journal.v3.tex; 15/10/2001; 18:54; p.7

8

on these variables to constrain actions in the plan to occur within the
horizon 2

As noted above, a candidate plan is a mapping of attributes to

sequences of intervals, along with a set of non-sequenced intervals. The

generalization to intervals with variables is straightforward, but it is

worth noting that the sequence of intervals for a given attribute gives
rise to a set of constraints on the time variables of each interval. To be

more exact, the end time of one interval is constrained to be less than

or equal to the start time of the following interval.

3.2. COMPATIBILITIES

Having generalized the representation of candidate plans, we find that

constraints can be used to significantly compress the specification of do-

main rules, i.e., configuration rules. Consider the example of our rover,

where the arm is restricted to be off whenever the rover is moving. We
noted that this gives rise to a large number of configurations that satisfy

this restriction. Using constraints and variables, however, we can reduce

this set to a single expression of a domain rule. In essence, the rule will

say that for any interval of the form holds(Location, s, e, going(x, y)),

there exists another interval holds(Arm -- State, s', e ', off()), such that
s' _< s and e _< e'. This notion of specifying constraint rules is general-

ized to a construct called a compatibility.

3.2.1. Compatibilities

The idea behind compatibilities is to provide a compact representation

of the constraints that the attribute definitions and configuration rules
impose on valid plans. Their basic structure is similar to the configu-

ration rules, in terms of specifying that certain intervals must exist in
order for a given interval to appear in a valid plan. The remaining issue

is how to fold the attribute definitions into the compatibility structure.

Each attribute definition has two components, the set of legal values,

and the permitted transitions. The set of possible values corresponds

to a set of legal combinations of value assignments to interval variables,
which in turn can be represented by a set of constraints. For example,

suppg_se each Going(locl,loc2) interval must hold for 40 time units.
This can easily be turned into a constraint on any interval of the form

holds(Location, s, e, Going(loci, loc2)), simply by requiring that e -

s = 40. The limitations on transitions are easily encoded in the same

manner as the configuration rules.
Based on these observations, we determine that a compatibility has

to specify the set of intervals to which it applies, the constraints on valid

2 There is a slight exception to this last case, discussed in §3.3

journal.v3.tex; 15/10/2001; 18:54; p.8

variable combinations, and the valid configurations. For reasons that

will become clear, it is beneficial to describe compatibilities by referring

to variables rather than direct matches with value sets. Consequently,

a simple compatibility is structured as follows:

Head: holds(a, tl, t2, P(Xl,..., xk))

Guards: llst-of vi E Gi

Parameter Constraints: list-of Cj (Yj)

Disjunction of Configuration Rules: list-of

Configuration: list-of

Temporal Relation: r

Configuration Interval: holds(b, t3, t4, Q(zl,..., zn))

list-of Configuration Constraints Km (Win)

Again, we utilize variables and constraints to make the represen-
tation more effective. Each of the guards specifies a domain Gi for

an interval variable, i.e. a variable in the set {a, tl,t2, xl...xk}. The

guards specify the set of intervals to which the rest of the compati-

bility applies. Each Cj is a constraint on the variables of the interval,
restricting the value combinations to those permitted by the attribute

definition. Each configuration rule defines a list of possible configura-

tions. Each configuration in turn consists of a set of interval templates,

described by the interval specification, constrained in their relation to
the P interval by the temporal relation r and the general constraints

Kin, each of which has a scope Wm that combines variables from the

parameters of the interval for P and the parameters of the interval for

Q, that is, the set {xl...Xk, Zl...zn}- The temporal relation T can

be expressed in terms of Allen's interval algebra(Allen and Koomen,

1983), augmented with metric interval distance bounds.
It is worth pointing out that the structure of constraints relating the

P interval and a Q interval is deliberate. The general constraints are

limited to the parameters of the predicate atom, while the temporal

relation provides distance bounds on the distances between the tem-
poral variables tl,.. •, t4. The consequence of this is that the temporal

variables-and the constraints connecting those form a simple temporal
network, which in turn gives us nice computational complexity behavior

when it comes to constraint reasoning.

3.2.2. Properties of Compatibilities
Any configuration rule can be expressed as a compatibility with a

grounded head and a disjunction of grounded interval sets, which means
that the expressivity is the same as in the theoretical framework. How-

ever, the use of compatibilities will invariably lead to an exponentially

journal.vS.tex; 15/10/2001; 18:54; p.9

10

smaller encoding of the domain constraints. Furthermore, since the

compatibilities simply express sets of configuration rules, the semantics

of a compatibility are fairly clear:

DEFINITION 3.1. I/attribute A takes on the value P(X), and all of

the guard constraints vi E Gi are satisfied, t,_en the following must hold:

- Each parameter constraints Ci(Yi) issatisfied.

- There is a configuration such that for each of its interval tem-

plates there exists a corresponding interval Qi(A) in the plan, such

that the temporal relation P(X)riQi(A) and the Kin(Win) con-
straints hold.

It should be noted that multiple compatibilities may be applica-

ble to a given interval. That, combined with the use of guards to

determine applicability, allows conditional constraints and configura-
tion rules to be specified with compatibilities. This is an important

extension to the more traditional non-conditional STRIPS rules, as

conditional constraints appear frequently in real-world domains. In fact,

the compatibility mechanism is powerful enough to express a variety

of complex plan constraints including conditional effects, disjunctive
preconditions, and arbitrary parameter relations.

3.2.3. Example: A Simple Compatibility
To ground this notion, let us again consider the rover domain exam-

pie, in particular the Going interval. Recall that we have suggested a

number of restrictions on Going:

- The rover must be At the location it begins Going, and must end

up At the location it terminates Going.

-- The travel time depends on the departure point and the desti-
nation; let us assume this time is specified by a function named
travelTime.

- While the rover is traveling, the arm must be Off.

Thg_orfipatibility for Going is then specified as follows:

Head: holds (locat ion,sg, eg,Going(z, y))

Parameter Constraints: sg + travelTime(x, y) = eg
Configuration Rule:

met_by holds(location, sal, eal,At(a)), a = x

met_by holds(location,sa2, ea2,At(b)), b = y
contains holds(arm, so, eo,Off)

journal.v3.tex; 15/10/2001; 18:54; p,lO

11

Arm-State I Off() _

containedBy

I

Location At(__ met-by-__ meets _ A.tj

a=x s + travelTime(×,y)=e y=b

Figure 1. A graphical picture of a simple compatibility for Going(x,y). The

parameter constraint is shown beneath the Going interval.

Figure 1 shows this pictorially.

3.2.4. Disjunctions as Conditional Compatibilities

In the above definition of compatibilities we have retained the explicit

disjunction from configuration rules. However, we can represent dis-

junctions by using explicit variables and associated constraints, which
in turn makes it possible to express more information in terms of

constraint-based representation. Assuming that parameters of the pred-

icates express the possible disjunctive choices 3, a set of compatibilities

on the same interval can specify disjunctions. To see how this works,

assume we have a more sophisticated rover model, in which turning

the rover is modeled explicitly. Now, Going can be preceeded by At or

Turning. This requires deciding whether or not to turn before traveling

to the next location. The Going predicate can be augmented with vari-
ables representing the decisions about whether Turning or At precedes

and follows the Going. These variables are used in compatibility guards

to specify which configuration rules apply. By choosing the guards so
that only one is satisfied at a time, only one set of configuration rules

will be enforced. The compatibilities are shown here below, and Figure

2 shows the structure of the compatibilities graphically.

Head: holds (a, sg, eg,Going(x, y, p, f))

Parameter Constraints: Sg + travelTime(x, y) = eg
Configuration Rule:

contains holds(b,so, eo,0ff) Head: holds(a,Sg, eg,Going(x, y))

Parameter Constraints: p =at-bef-go

Configuration Rule:

met_by holds(b,sa, ea,At(a)), a = x, a = b

Head: holds(a,sg, eg,Going(x, y))
Parameter Constraints: p =turn-bef-go

3 This is notational convenience only; the disjunctive variables can be defined

anywhere in the scope of the compatibility.

journal.v3.tex; 15/10/2001; 18:54; p.ll

12

Configuration Rule:

met_by holds(b,st, et,Yurning(a)), a = x, a = b

Head: holds(a,sg, eg,Going(x, y))

Parameter Constraints: f =at-aft-go

Configuration Rule:

meets hoids(b,sa, ea,At(a)), b = y, a = b

Head: holds(a,s9, eg,Going(x , y))

Parameter Constraints: f =turn-aft-go

Configuration Rule:

meets holds(b,st, et,Wurning(a)), a = x, a = b

Arm-State

x--a

Location

p=at-bef-go:

met-by

containedBy

f=at-aft-go:

p=turn=aft-go:
meets

s+a'avelTime(x,y)=e

p=turn-bef-go:

met-by

y=b
x=a

Figure 2. A graphical picture of a disjunctive compatibility for Going(x,y). The

constraints are shown beneath the Going interval, and the conditional configuration

rules are shown as temporal relations and intervals that must exist in the plan.

Attribute equivalences are omitted.

The advantage of using conditional compatibilities rather then ex-

plicit disjunctions is twofold. First, the explicit use of variables to

specify choices is a more natural and more effective representation in

constraint-based reasoning. Secondly, the application and semantics of

compatibilities are simplified. Since no representational power is lost,

we cffn _gfely assunie that conditional compatibilities are used in place

of disjunctions for the remainder of this section.

3.3. BUILDING PLANS

In the constraint-based representation we have introduced, the notion

of a candidate plan can be extended to include intervals with unbound

variables. A candidate plan is therefore a mapping of attributes to

journal.v3.tex; 15/10/2001; 18:54; p.12

13

sequences of intervals, along with a set of non-sequenced intervals,

where each interval describes a wide range of possible interval instan-

tiations. We now turn our attention to describing how candidate plans

are modified, with the goal of mapping them into valid plans.

We first define the set of valid plans that are completions of a given

candidate plan. Given a candidate plan Pc., any valid plan P such that

there is a i-i mapping between the intervals in Pc and an interval in

P with the same predicate but with all of the variables grounded, is a

valid completion. Clearly, the set of valid plans may be empty, which

indicates that the candidate plan is invalid. In general, it is intractable

to identify invalid candidate plans, but it is easy to see that if any

constraint is violated by a candidate plan, the candidate is invalid.

Such candidate plans are inconsistent.

Two things distinguish candidate plans from valid plans. One is that

of intervals that need to appear in the plan, but are not necessarily

in place yet. The other is that of unbound variables, which represent

choices in the exact specification of intervals. Not surprisingly, these

two issues determine the choices to be made when completing a plan.

Planning proceeds by selecting from these choices, and modifying the

candidate plan. As this is done, we must assess the impact of these

changes on the plan by checking the compatibilities relevant to the in-

terval that was changed. This results in a distinction between candidate

plans.

A candidate plan is full, if the following is satisfied: For every com-

patibility that is applicable to an interval on an attribute, the associated

parameter constraints have been posted on the interval variables, and

for every configuration rule, there exists a matching interval such that

the temporal relation and the other constraints are posted between

variables of the two intervals. Given this, it is easy to turn a given

candidate plan into a full candidate plan, by posting any missing pa-

rameter constraints, and adding any missing intervals along with the

necessary constraints. The added intervals are added as non-sequenced
intervals.

We can now define the operations that modify plans, and can be

used to search for a valid complete plan. Since these add decisions to

th plan, and thus potentially reduce the set of valid plan completions,

the operations are called restrictions:

- Putting an uasequenced interval into an attribute sequence. This

can be accomplished in two different ways:

• An interval can be inserted between two intervals on an at-

tribute, along with the implied ordering constraints that re-
late the start and end times of the intervals involved. Notice

jo_lcaal.v3.tex; 15/10/2001; 18:54; p.13

14

that if there is insufficient time to insert the new interval, the
mutual exclusion constraints will be violated.

• An unsequenced interval can be equated with an interval in

the attribute sequence. This requires that the predicates of

the intervals be identical, and that the corresponding interval

variables be pairwise equated.

The domain of a variable can be restricted. The obvious choices

are to assign a value to unassigned variables, but it is also possible

to reduce the set of possible values.

The inverse of these operations are called relaxations.

In terms of constraint-based reasoning, the restriction and relaxation

operations map directly into the notions of strengthening and weaken-

ing of constraint networks, as those notions are defined for dynamic

constraint problems. As we will see here below, this is one of the key
strengths of this approach, as there are many well-known techniques

available to reason effectively about dynamic constraint networks.

Whenever a plan is modified, we must make the candidate plan a full

candidate before proceeding. This is referred to as the plan invariant.

Enforcing this plan invariant is done as follows:

Restriction: any configuration rules that apply to the candidate
plan, and are not already enforced, are enforced by adding the

corresponding intervals and constraints. For example, an interval

may now be on in an attribute sequence, leading to applicabil-

ity of a compatibility. Another example is that a variable's do-

main may now match a compatibility guard guard, leading to the

applicability of a configuration rule.

Relaxation: any configuration rules that no longer appiy result in
the removal of the relevant intervals and constraints. For example,

a compatibility guard that previously applied may no longer apply,

resulting in the removal of constraints and intervals from the plan.

Let us return to the complex rover model once again for an example.

Suppose we have a plan with holds (Location , s, e, Going(x,y,p,f)
on the Location attribute , and the assignment p =turn-bef-go is

made. The configuration guards are checked. Since a variable assign-
ment was made, we only check the guards relevant to variable p. The

guard p =turn-bef-go is satisfied, and so a non-sequenced interval

holds (location, s', e', Turning(a) is added to the plan, along with

the constraints a = x and e' = s (which enforces Going(x,y) met_by

Turning(a)). Now suppose that the assignment p =turn-bef-go is

journal.v3.tex; 15/10/2001; 18:54; p.14

15

retracted. The configuration guard is no longer satisfied, and so the

interval for Turning(a) and the attendant constraints are removed

from the plan. This process is illustrated in Figure 3.

_1o ca t ±on Free Intervals Constraints

(_ _ GS°+hug;;ln'lm ime(_ 'YY=; ff_

/

I t
p=tum_beg_go P=?

J
cation Free Intervals Constraints

] Off () | Going contained_by Off [

IGoi(Gc ng (X, y, p=turn-bef-go, f I II s+travelTime(x,y)=e [

a= X................. [_.._ Going met_byTurning [

/ I Turning (A) i

Figure S. Illustration of the plan invariant at work. When the assignment

p =turn-bef-go is made, free intervals and constraints are added to the plan. When

it is retracted, the configuration guard no longer holds, and the Turning interval

and its constraints are removed from the plan.

There remains one complication in the process for building plans
with activities and states that have temporal extent, which is related to

the notion of a planning horizon. The purpose of a planning horizon is to

limit the plan being built to the given temporal interval. Consequently,
the planning effort is limited to those intervals that necessarily intersect
the horizon. Now suppose that it is possible for an interval to be wholly
contained outside the horizon. Such an interval need not be a part

of the plan, and thus does not have to be sequenced on an attribute.
This notion is important, even when the planning horizon is infinite,

as it distinguishes between an interval following a finite interval and an

interval following a possibly infinite interval.
As a final note on the tools we have defined for building valid plans, it

is worth pointing out that the definition of a valid plan can be relaxed to
allow some uninstantiated variables and unsatisfied interval constraints.

The reason for allowing this is that the agent executing the plan may

well be intelligent enough to complete the plan on the fly, which in turn
allows for more flexibility during execution. This relaxation can be done

by defining a plan identification function that indicates whether a plan
is sufficiently complete or not. The full details on this generalization

can be found in (Jdnsson et al., 2000).

journal.v3.tex; 15/10/2001; 18:54; p.15

16

3.4. PLANNING CORRECTNESS

In the preceding section we formalized the notion of a valid plan, and

in this section we have presented a constraint-based representation and

reasoning mechanism for specifying candidate plans and transforming
those into valid plans, when possible. The only remaining issue is to

show that the operations proposed here above are complete, in the sense

that they can be used to build any given valid plan completion. It turns

out that as long as no attribute is mapped to an empty sequence in

the initial candidate plan, the operations are complete. We will now

outline why this is the case; a formal proof can be found in (J6nsson

et al., 2000).
Consider a candidate plan Pc and a valid completion P. For each

attribute, the sequence of intervals in P is permitted by the associated
finite state machine. Assuming that conditional compatibilities are used

in place of disjunctions, we note that a fully grounded interval uniquely
determines the previous and following interval. For a given attribute,
let I be an interval on the attribute in Pc. We now instantiate each

unassigned variable, in accordance with the instantiation in the final

plan P, which automatically gives us the unsequenced predecessor and
successor intervals. We then sequence those in the same way as they

are in the final plan P. This is repeated until the attribute has the

same interval sequence as in the final plan. By repeating this for each

attribute separately, we can turn Pc into the complete plan P. By

definition, all other domain constraints are satisfied in P.

3.5. CONSTRAINT REASONING

We have already noted that each candidate plan gives rise to a con-
straint network, and that the operations to restrict and relax plans map

directly to strengthening and weakening operations for constraint net-

works. This makes it possible to bring results from the wide literature
on CSPs to bear on the constraint networks.

There are many constraint reasoning techniques that can be used

to make the planning effort more effective. The only limitation is that
the constraint reasoning methods preserve the set of valid plan com-

pletions. For consistency-maintenance techniques such as the tempo-
ral constraint propagation, arc consistency maintenance, higher-level

consistency enforcement, and the correct procedure application, as de-

scribed in the procedural framework , this is indeed the case. The
reason is straightforward; these techniques never eliminate values or

value combinations that could be part of a solution to the constraint

network instance, which in turn means that the addition of any such
value or value combination would have made the candidate plan invalid.

journal.v3.tex; 15/10/2001; 18:54; p.16

17

Among the most useful of these techniques are those that efficiently

reduce the domains of variables. The temporal constraints can be ad-

dressed using the algorithms described in (Dechter et al., 1991). Arith-

metic constraints can be enforced using bounds consistency techniques

(Marriott and Stuckey, 1998). However, many of the constraints will

be specific to the particular planning domain. Consequently, a general

constraint reasoning framework is required. We use the procedural con-

straints framework (Jdnsson, 1997). In this framework, each constraint
is embodied as a procedure. The benefits of this are an efficient and

compact representation of the constraints, as each procedure can take

advantage of specific techniques. The framework is extensible, as new

constraints can be easily added. The framework requires each proce-

dure to provide a definitive answer when all variables in its scope are

assigned singleton values. However, procedures can do much more, such

as enforce arc consistency or bounds consistency. Continuous valued

variables can be in the scope of any constraint, as long as they are

dependent variables, that is, their values are a function of the discrete
variables in the constraint.

Resources are easily represented using our framework. Unary re-
sources can be directly handled by attributes, since it is sufficient to

enforce binary mutual exclusion. Some discrete multi-capacity resources

can be represented using multiple attributes of the same type; new

intervals may be inserted onto any appropriate attribute. Continuous

resources can be modeled by using a single attribute with a parameter

to represent either the use or capacity of the resource. Arithmetic
constraints associated with each interval dictate how the resource is

affected. The key issue in managing resources in planning is to be

able to effectively reason about the impact of the current state of the
resource on the plan. Techniques such as edge-finding (Nuijten, 1994)

and the balance constraint (Laborie, 2001) can both determine the

state of resource consumption, and add other constraints to the plan

to ensure that adequate resources are available. Fully integrating these

techniques into a planning framework is the subject of future work.

4. Previous work

Allen and Koomen (Allen, 1991; Allen and Koomen, 1983) developed

a sophisticated framework for representing time and temporal plans,

much of which has been adopted by later researchers (including our-

selves) as the representation for planning. However, no planners based

on this formalism were developed, and the framework developed does
not include completeness results for planning domains.

journal.v3.tex; 15/10/2001; 18:54; p.17

18

Our work builds heavily on two prior approaches to planning with

time and attributes. The Remote Agent Planner (RAP} (JSnsson et al.,

2000), which is derived from HSTS (Muscettola, 1994), and IxTeT

(Laborie and Ghallab, 1995; Ghallab and Laruelle, 1994), are planners

that handle time and resources, as well as supporting mutual exclu-
sion through attributes. Both were developed to work on reM-world

problems involving planetary rover operations. Concurrent plans are

produced by defining what values the attributes take on. IxTeT uses
a point-based representation of time while RAP uses an interval-based

representation. IxTeT has sophisticated resource representation and

reasoning capabilities built into the planner infrastructure (Ghallab and

Laruelle, 1994). In addition, mutual exclusion on IxTeT attributes is

handled via a threat mechanism similar to that used in POCL planning,

while the approach in RAP is to explicitly order subgoals on attributes.

RAP depends on the met-by and meets constraints to ensure attributes

have a value at all times, while IxTeT uses events at the start and end

of activities. Finally, IxTeT cannot support disjunctive relationships
between activities. The CAIP framework can be viewed as providing a

sound theoretical justification for these planning systems.

DEVISER (Vere, 1983) is a POCL planner that handles time 4

DEVISER domain descriptions can include absolute temporal con-
straints and duration constraints; the duration of an activity can be

an arbitrary function of any of the parameters of an activity. Goals

can be expressed using both absolute temporal constraints and relative

temporal constrMnts; for instance, it is possible to assert that A and B

are both true simultaneously. In DEVISER, all additions and deletions
occur at the end of the activity. Modeling techniques are described to

model activities in which a precondition need not be true throughout

the action and to model an activity in which an effect takes place

immediately. Both require adding new fluents to the representation,

and there is no easy way to introduce related activities that start or

end at times arbitrarily related to the activity in question.
ZENO (Penberthy, 1993) and Descartes (Joslin, 1996) are POCL

planners that handle time. Both are built on the notion of intervals
(Temporally Quantified Assertions (TQAs) in Descartes and in ZENO.

Descartes allows arbitrary constraints among the parameters of TQAs.

In ZENO, continuous variables are allowed to vary in a piecewise linear

manner; this forces the modeling of other constraints as piecewise lin-
ear. Neither ZENO nor Descartes support mutual exclusion, and lack

theoretical justification for their extensions of STRIPS.

4 Deviser is actually based on NONLIN and NOAH, which pre-date POCL

planning

journal.v3.tex; 15/10/2001; 18:54; p.18

19

TGP (Smith and Weld, 1999) is a version of Graphplan that handles
a version of STRIPS with time. Activities are assumed to have duration,

and can also have absolute temporal constraints on the start and end

times. This is coupled with the following extension to the semantics

of STRIPS: All preconditions are required to hold before the action

begins. All preconditions unaffected by the action are required to hold
until the action ends. Effects are required to hold after the action

ends. These semantics are similar to those found in DEVISER; TGP is

more limited than DEVISER in that activity durations must be part of

the model. The CAIP framework is more expressive, in that arbitrary

synchronizations between actions can be expressed. TGP also does not

support attributes or resources.

5. Conclusions and Future Work

We have presented CAIP, a planning framework that supports fea-

tures common to real planning problems. CAIP provides primitives

that supports modeling domains with real time, concurrency, resources,

mutual exclusion, and disjunctions. Intervals representing a temporally
extended state provide a basis for constraining the timing and concur-

rency of activities. Attributes enforce mutual exclusion and support

the modeling of resources. The underlying constraint-based represen-

tation permits compact representation of these rules, supports disjunc-

tions, and also allows planning technology to leverage off of efficient

algorithms for constraint satisfaction problems.
The framework leaves a variety of implementation details unspec-

ified. For example, a wide variety of constraint reasoning algorithms

such as arc consistency or bounds consistency can be used to quickly

identify and eliminate values of variables that can lead to invalid plans.

Special reasoning algorithms can be used for domain specific constraints.
In some cases, col!ections of constraints may be reasoned about simul-

taneously; ZENO uses an incremental Simplex algorithm to manipulate

linear constraints (Penberthy, 1993). Sophisticated resource reasoning

algorithms such as edge-finding (Nuijten, 1994) and balance constraints

(Laborie, 2001) can also be used. However, these require matching
attributes with resources for particular domain models.

In the CAIP framework, an interval on an attribute can force other

intervals to exist on other attributes. Another option is to constrain

the intervals that other attributes may take on. In essence, this would

permit the expression of negation constraints on attributes. HSTS per-
mitted the posting of constraints limiting the possible intervals that
could occur on an attribute within a period of time (Muscettola, 1994).

journal.v3.tex; 15/10/2001; 18:54; p.19

2O

Modeling experience with the CAIP framework will indicate whether

such expressive power is needed by the framework, and how best to

incorporate it.

References

Allen, J.: 1991, 'Planning as Temporal Reasoning'. In: Proceedings of the Second

Conference on Knowledge Representation.

Allen, J. and J. Koomen: 1983, 'Planning using a Temporal World Model'. In: Pro-

ceedings of the Eighth International Joint Conference on Artificial Intelligence.

Dechter, R., I. Meiri, and J. Pearl: 1991, 'Temporal Constraint Networks'. Artificial

Intelligence 49, 61-94.

Do, M. B. and S. Khambhampati: 2000, 'Solving Planning-Graph by Compiling It

Into CSP'. In: Proceedings of the Fifth International Conference on Artificial

Intelligence Planning and Scheduling. pp. 82-91.

Fikes, R. E. and N. J. Nilsson: 1971, 'STRIPS: A new approach to the application

of theorem proving to problem solving'. Artificial Intelligence 2((3-4)).

Ghallab, M. and H. Laxuelle: 1994, 'Representation and Control in IxTeT, a Tem-

poral Planner'. In: Proceedings of the 2d Conference on Artificial Intelligence

Planning And Scheduling. pp. 61-67.

Haslum, P. and H. Geffner: 2000, 'Admissible Heuristics for Optimal Planning'.

In: Proceedings of the Fifth International Conference on Artificial Intelligence

Planning and Scheduling. pp. 140 -149.

Jdnsson, A.: 1997, 'Procedural Reasoning in Constraint Satisfaction'. Ph.D. thesis,

Stanford University Computer Science Department.

Jdnsson, A. K., P. H. Morris, N. Muscettola, K. Rajan, and B. Smith: 2000, 'Plan-

ning in Interplanetary Space: Theory and Practice'. In: Proceedings of the Fifth

International Conference on Artificial Intelligence Planning and Scheduling.

Joslin, D.: 1996, 'Passive and Active Decision Postponement in Plan Generation'.

Ph.D. thesis, Carnegie Mellon University Computer Science Department.

Laborie, P.: 2001, 'Algorithms for Propagating Resource Constraints in AI Planning

and Scheduling: Existing Approaches and New Results'. In: Proceedings of the

6th European Conference on Planning.

Laborie, P. and M. Ghallab: 1995, 'Planning with Sharable Resource Constraints'.

In: Proceedings of the International Joint Conference on Artificial Intelligence.

pp. 1643 - 1649.

Marriott, IK. and P. Stuckey: 1998, Programming with Constraints: An Introduction.
The MIT Press.

Muscettola, N.: 1994, 'HSTS: Integrated Planning and Scheduling'. In: M. Zweben

and M. Fox (eds.): Intelligent Scheduling. Morgan Kaufman, pp. 169-212.

Nuijten, W.: 1994, 'Time and Resource Constrained Project Scheduling: A Con-

straint Satisfaction Approach'. Ph.D. thesis, Eindhoven University of Technology

Department of Mathematics and Computer Science Department.

Penberthy, S.: 1993, 'Planning with Continuous Change'. Ph.D. thesis, University

of Washington Department of Computer Science and Engineering.

Smith, D. E. and D. S. Weld: 1999, 'Temporal Planning with Mutual Exclusion

Reasoning'. In: IJCAL pp. 326-337.

Vere, S.: 1983, 'Planning in Time: Windows and Durations for Activities and Goals'.

Pattern Matching and Machine Intelligence 5, 246-267.

journal.v3.tex; 15/10/2001; 18:54; p.20

